论文标题
重型杂质物理学的功能决定性方法调查
Functional Determinant Approach Investigations of Heavy Impurity Physics
论文作者
论文摘要
在这篇简短的综述中,我们报告了一种功能性决定因素方法(FDA)的一些新发展,这是一种精确的数值方法,在研究沉浸在费米气体中并用射频脉冲操纵的重量子杂质的研究。 FDA已成功地用于研究时间和频域中超低理想费米气体中重型杂质的普遍动力学响应,这允许探索著名的安德森正交性灾难(OC)。在这样的系统中,Fermi Sea的多个粒子孔激发诱导了OC,这是一个简单的扰动图片,并且表现为无数的准粒子,即所谓的极地。最近,已经开发了两个用于研究大量杂质的新方向。一种是将FDA扩展到密切相关的背景超流体背景,即Bardeen-Cooper-Schrieffer(BCS)Superfluid。在该系统中,由于超氟差距抑制了多个颗粒孔的激发,安德森的正交性灾难被禁止,这导致了真正的极性层子。另一个方向是将FDA推广到多个RF脉冲方案的情况下,该方案将良好的1D拉姆西光谱扩展到Ultracold Atoms中的1D Ramsey光谱范围与多维的精神相同,与众所周知的多维核磁共振和光学多维的多维相干光谱相同。多维的拉姆西光谱学使我们能够研究杂质中元系统的光谱峰之间的相关性,该光谱峰在常规的一维光谱中无法访问。
In this brief review, we report some new development in the functional determinant approach (FDA), an exact numerical method, in the studies of a heavy quantum impurity immersed in Fermi gases and manipulated with radio-frequency pulses. FDA has been successfully applied to investigate the universal dynamical responses of a heavy impurity in an ultracold ideal Fermi gas in both the time and frequency domain, which allows the exploration of the renowned Anderson's orthogonality catastrophe (OC). In such a system, OC is induced by the multiple particle-hole excitations of the Fermi sea, which is beyond a simple perturbation picture and manifests itself as the absence of quasiparticles named polarons. More recently, two new directions for studying heavy impurity with FDA have been developed. One is to extend FDA to a strongly correlated background superfluid background, a Bardeen-Cooper-Schrieffer (BCS) superfluid. In this system, Anderson's orthogonality catastrophe is prohibited due to the suppression of multiple particle-hole excitations by the superfluid gap, which leads to the existence of genuine polaron. The other direction is to generalize the FDA to the case of multiple RF pulses scheme, which extends the well-established 1D Ramsey spectroscopy in ultracold atoms into multidimensional, in the same spirit as the well-known multidimensional nuclear magnetic resonance and optical multidimensional coherent spectroscopy. Multidimensional Ramsey spectroscopy allows us to investigate correlations between spectral peaks of an impurity-medium system that is not accessible in the conventional one-dimensional spectrum.