论文标题

Lorentz不变性违反对$γ-γ$吸收的预期签名

Expected Signature For the Lorentz Invariance Violation Effects on $γ-γ$ Absorption

论文作者

Zheng, Y. G., Kang, S. J., Zhu, K. R., Yang, C. Y., Bai, J. M.

论文摘要

仍然有一些有关{令人难以置信的} {非常高的能量(vhe)} $γ$ ray签名的{campect and}的问题。为了帮助理解该机制,重点关注跨木制政权的线性和二次扰动模式,本文重新审视了lorentz不变性违反对$γ-γ$吸收的预期签名(GRBS)的TEV光谱(GRBS)。我们注意到,对成对生产过程有{临界能量},该过程对假定的量子重力能量表很敏感。我们建议,在几十个TEV上{重新出现$γ$ -rays}的能量光谱是对Lorentz违规(LIV)效应的粗略观察诊断。预期光谱特性应用于GRB 221009a。结果表明,此处考虑的宇宙不透明度与{can}大致重现了源的观察到的$γ$ -Ray光谱,这使我们能够约束$ e _ {\ rm qg,〜1} \ leq3.35 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 20} $ e的上限,及以E { qg,〜2} \ leq9.19 \ times10^{12} $ gev用于二次扰动。 {这些方案将用$ξ_ {\ rm 1}^{\ prime} \ geq 3.62 \ geq 3.62 \ times10^{ - 2} $更新LIV系数的界限,用于线性扰动,$之一标准模型扩展(SME)框架中的扰动。 }

There are still some {significant and} unanswered questions about the {incredible} {very high energy (VHE)} $γ$-ray signatures. To help understand the mechanism, focusing on the linear and quadratic perturbation mode for the subluminal regime, the present paper revisited the expected signature for the Lorentz invariance violation effects on $γ-γ$ absorption in TeV spectra of Gamma-ray bursts (GRBs). We note that there is {a critical energy} for the pair production process, which is sensitive to the assumed quantum gravity energy scale. We suggest that a {reemergence of the energy spectrum of $γ$-rays} at the several tens of TeV is a rough observational diagnostic for the Lorentz invariance violation (LIV) effects. The expected spectra characteristics are applied to a GRB 221009A. The results show that the cosmic opacity with LIV effects considered here {can} roughly reproduce the observed $γ$-ray spectra for the source, which enabled us to constrain the upper limit of the values of energy scale at $E_{\rm QG,~1}\leq3.35\times10^{20}$ GeV for the linear perturbation and $E_{\rm QG,~2}\leq9.19\times10^{12}$ GeV for the quadratic perturbation. {These scenarios would update the bound of the LIV coefficient with $ξ_{\rm 1}^{\prime}\geq 3.62\times10^{-2}$ for the linear perturbation, and $ξ_{\rm 2}^{\prime}\geq 1.33\times10^{6}$ for the quadratic perturbation in the standard model extension (SME) framework, respectively. }

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源