论文标题

有条件的生成模型,用于模拟自然运动期间EMG的模拟

Conditional Generative Models for Simulation of EMG During Naturalistic Movements

论文作者

Ma, Shihan, Clarke, Alexander Kenneth, Maksymenko, Kostiantyn, Deslauriers-Gauthier, Samuel, Sheng, Xinjun, Zhu, Xiangyang, Farina, Dario

论文摘要

肌电图(EMG)信号的数值模型为我们对人类神经生理学的基本理解做出了巨大贡献,并且仍然是运动神经科学的中心支柱和人机接口的发展。但是,尽管基于有限元方法的现代生物物理模拟非常准确,但它们在计算上非常昂贵,因此通常仅限于建模静态系统,例如同一四肢收缩。作为解决此问题的解决方案,我们提出了一种转移学习方法,其中对条件生成模型进行了训练以模仿高级数值模型的输出。为此,我们提出生物素,这是一种有条件的生成神经网络,经过对抗训练,以在各种体积导体参数下生成运动单位激活电势波形。我们证明了这种模型具有高度精度的数值模型的少量数字模型之间插值的能力。因此,计算负载大大减少,这允许在真正动态和自然主义运动中快速模拟EMG信号。

Numerical models of electromyographic (EMG) signals have provided a huge contribution to our fundamental understanding of human neurophysiology and remain a central pillar of motor neuroscience and the development of human-machine interfaces. However, whilst modern biophysical simulations based on finite element methods are highly accurate, they are extremely computationally expensive and thus are generally limited to modelling static systems such as isometrically contracting limbs. As a solution to this problem, we propose a transfer learning approach, in which a conditional generative model is trained to mimic the output of an advanced numerical model. To this end, we present BioMime, a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms under a wide variety of volume conductor parameters. We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy. Consequently, the computational load is dramatically reduced, which allows the rapid simulation of EMG signals during truly dynamic and naturalistic movements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源