论文标题
部分可观测时空混沌系统的无模型预测
A novel family of beta mixture models for the differential analysis of DNA methylation data: an application to prostate cancer
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Identifying differentially methylated cytosine-guanine dinucleotide (CpG) sites between benign and tumour samples can assist in understanding disease. However, differential analysis of bounded DNA methylation data often requires data transformation, reducing biological interpretability. To address this, a family of beta mixture models (BMMs) is proposed that (i) objectively infers methylation state thresholds and (ii) identifies differentially methylated CpG sites (DMCs) given untransformed, beta-valued methylation data. The BMMs achieve this through model-based clustering of CpG sites and by employing parameter constraints, facilitating application to different study settings. Inference proceeds via an expectation-maximisation algorithm, with an approximate maximization step providing tractability and computational feasibility. Performance of the BMMs is assessed through thorough simulation studies, and the BMMs are used for differential analyses of DNA methylation data from a prostate cancer study. Intuitive and biologically interpretable methylation state thresholds are inferred and DMCs are identified, including those related to genes such as GSTP1, RASSF1 and RARB, known for their role in prostate cancer development. Gene ontology analysis of the DMCs revealed significant enrichment in cancer-related pathways, demonstrating the utility of BMMs to reveal biologically relevant insights. An R package betaclust facilitates widespread use of BMMs.