论文标题

关于hietarinta方程式的darboux

On Darboux non-integrability of the Hietarinta equation

论文作者

Startsev, S. Ya.

论文摘要

自主hietarinta方程是Quad-Graph离散方程的一个众所周知的例子,该方程在立方体周围是一致的。在最近的一项工作中,有人猜想该方程是可以集成的(即,对于两个独立的离散变量中的每个变量,存在非平凡的函数,这些函数在此离散变量中移动后的方程解决方案上保持不变)。我们证明,对于方程系数的通用值,这种猜想是不正确的。 为此,我们采用了R.I. 〜yamilov引入的两点可逆转换。我们证明,如果在上述类型的映射解决方案再次转换为其解决方案中,则二次图上的自主差方程不可能是darboux。这意味着通用的hietarinta方程不可集成,因为一般情况下的hietarinta方程具有两点可逆自动转换。一路上,发现了所有hietarinta方程的所有darboux集成子速率。所有这些都通过点转换减少到已经知道的集成方程式。 在文章的结尾,我们还简要描述了证明Hietarinta方程的Darboux非共同性的另一种方法。这种替代方式是基于以下事实:差异替代将该方程式与线性方程相关。因此,hietarinta方程为我们提供了一个四边形方程的示例,该方程是可线化但不可集中的。

The autonomous Hietarinta equation is a well-known example of the quad-graph discrete equation which is consistent around the cube. In a recent work, it was conjectured that this equation is Darboux integrable (i.e., for each of two independent discrete variables there exist non-trivial functions that remain unchanged on solutions of the equation after the shift in this discrete variable). We demonstrate that this conjecture is not true for generic values of the equation coefficients. To do this, we employ two-point invertible transformations introduced by R.I.~Yamilov. We prove that an autonomous difference equation on the quad-graph cannot be Darboux integrable if a transformation of the above type maps solutions of this equation into its solutions again. This implies that the generic Hietarinta equation is not Darboux integrable since the Hietarinta equation in the general case possesses the two-point invertible auto-transformations. Along the way, all Darboux integrable subcases of the Hietarinta equation are found. All of them are reduced by point transformations to already known integrable equations. At the end of the article, we also briefly describe another way to prove the Darboux non-integrability of the Hietarinta equation. This alternative way is based on the known fact that a difference substitution relates this equation to a linear one. Thus, the Hietarinta equation gives us an example of a quad-graph equation that is linearizable but not Darboux integrable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源