论文标题
原子定义的硅隧道连接点的三维调整
3-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction
论文作者
论文摘要
量子信息处理器的需求是隧道速率的原位可调节性和设备内的交换交互能量。硅中的原子量子位的较大能级分离非常适合量子操作,但是使用平面栅极架构限制设备可调性,需要垂直分离的顶部门才能在设备中控制隧道。在本文中,我们解决了SI:P,隧道连接处最简单的隧道设备的控制。在这里,我们证明我们可以通过使用垂直分离的顶门来调整其电导率,该顶门与 +-5nm精度与连接点对齐。我们表明,与平面门相比,单片3D外延顶栅会增加3倍的电容耦合,这一倍数为3倍,从而导致隧道屏障高度可调性为0-186mev。通过将多个封闭式连接组合在一起,我们将整体式3D门控技术扩展到实施纳米级逻辑电路,包括和 / /或门。
A requirement for quantum information processors is the in-situ tunability of the tunnel rates and the exchange interaction energy within the device. The large energy level separation for atom qubits in silicon is well suited for qubit operation but limits device tunability using in-plane gate architectures, requiring vertically separated top-gates to control tunnelling within the device. In this paper we address control of the simplest tunnelling device in Si:P, the tunnel junction. Here we demonstrate that we can tune its conductance by using a vertically separated top-gate aligned with +-5nm precision to the junction. We show that a monolithic 3D epitaxial top-gate increases the capacitive coupling by a factor of 3 compared to in-plane gates, resulting in a tunnel barrier height tunability of 0-186meV. By combining multiple gated junctions in series we extend our monolithic 3D gating technology to implement nanoscale logic circuits including AND and OR gates.