论文标题

$ sp(n_c)$量表理论的拓扑敏感性,规模设置和普遍性

Topological susceptibility, scale setting and universality from $Sp(N_c)$ gauge theories

论文作者

Vadacchino, Davide, Bennett, Ed, Lin, C. -J. David, Hong, Deog Ki, Lee, Jong-Wan, Lucini, Biagio, Piai, Maurizio

论文摘要

在这项贡献中,我们报告了对威尔逊流的性质的研究以及$ n_c = 2,\,\,4,\,6,\,8 $的$ sp(n_c)$量学理论的拓扑敏感性的计算。如$ su(n_c)$所观察到的,Wilson流量显示了根据量规组的二次Casimir操作员的扩展,并且对于每个探测的值$ n_c $ $ n_c $。拓扑敏感性的连续限量是计算的,我们猜想它会随组的维度扩展。几个独立合作的$ SU(N_C)$ YANG-MILLS理论中执行的晶格测量值使我们能够测试此猜想,并获得重新验证的拓扑敏感性的通用大型$ N_C $限制。

In this contribution, we report on our study of the properties of the Wilson flow and on the calculation of the topological susceptibility of $Sp(N_c)$ gauge theories for $N_c=2,\,4,\,6,\,8$. The Wilson flow is shown to scale according to the quadratic Casimir operator of the gauge group, as was already observed for $SU(N_c)$, and the commonly used scales $t_0$ and $w_0$ are obtained for a large interval of the inverse coupling for each probed value of $N_c$. The continuum limit of the topological susceptibility is computed and we conjecture that it scales with the dimension of the group. The lattice measurements performed in the $SU(N_c)$ Yang-Mills theories by several independent collaborations allow us to test this conjecture and to obtain a universal large-$N_c$ limit of the rescaled topological susceptibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源