论文标题

通过对多站点数据进行训练的渐进式详细网络来对抗大脑MRI细分的扫描仪效应

Fighting the scanner effect in brain MRI segmentation with a progressive level-of-detail network trained on multi-site data

论文作者

Svanera, Michele, Savardi, Mattia, Signoroni, Alberto, Benini, Sergio, Muckli, Lars

论文摘要

许多对人脑的临床和研究需要准确的结构MRI分割。虽然传统的基于ATLA的方法可以应用于任何采集站点的卷,但最近的深度学习算法仅在对培训中相同站点进行测试(即内部数据)进行测试时,才能确保很高的准确性。在外部数据上经历的性能降解(即,看不见地点的看不见的体积)是由于不同MR扫描仪模型,获取参数和独特的文物所引起的强度分布的地点变化引起的。为了减轻这种位点依赖性,通常称为扫描仪效应,我们提出了LOD-Brain,这是一个3D卷积神经网络,具有渐进级别的详细信息(LOD),能够从任何站点分割大脑数据。更粗糙的网络级别负责学习可靠的解剖学先验,可用于识别大脑结构及其位置,而较优质的水平则完善了模型以处理特定地点的强度分布和解剖学变化。我们通过对空前的丰富数据集进行培训,从而确保跨站点的鲁棒性,该模型从开放式存储库中汇总了数据:从大约160个收购地点(1.5-3T)的近27,000次T1W卷,从8至90年的人口,量为1.5-3T。广泛的测试表明,Lod-brain会产生最先进的结果,内部和外部部位之间的性能无显着差异,并且在挑战解剖学变化方面有鲁棒。它的可移植性为在不同医疗机构,患者人群和成像技术制造商中的大规模应用开辟了道路。代码,模型和演示可在项目网站上找到。

Many clinical and research studies of the human brain require an accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure very high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). The performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variabilities in intensity distributions induced by different MR scanner models, acquisition parameters, and unique artefacts. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD) able to segment brain data from any site. Coarser network levels are responsible to learn a robust anatomical prior useful for identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedented rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability opens the way for large scale application across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available at the project website.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源