论文标题

部分可观测时空混沌系统的无模型预测

A Framework for Approximation Schemes on Disk Graphs

论文作者

Lokshtanov, Daniel, Panolan, Fahad, Saurabh, Saket, Xue, Jie, Zehavi, Meirav

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We initiate a systematic study of approximation schemes for fundamental optimization problems on disk graphs, a common generalization of both planar graphs and unit-disk graphs. Our main contribution is a general framework for designing efficient polynomial-time approximation schemes (EPTASes) for vertex-deletion problems on disk graphs, which results in EPTASes for many problems including Vertex Cover, Feedback Vertex Set, Small Cycle Hitting (in particular, Triangle Hitting), $P_k$-Hitting for $k\in\{3,4,5\}$, Path Deletion, Pathwidth $1$-Deletion, Component Order Connectivity, Bounded Degree Deletion, Pseudoforest Deletion, Finite-Type Component Deletion, etc. All EPTASes obtained using our framework are robust in the sense that they do not require a realization of the input graph. To the best of our knowledge, prior to this work, the only problems known to admit (E)PTASes on disk graphs are Maximum Clique, Independent Set, Dominating set, and Vertex Cover, among which the existing PTAS [Erlebach et al., SICOMP'05] and EPTAS [Leeuwen, SWAT'06] for Vertex Cover require a realization of the input disk graph (while ours does not). The core of our framework is a reduction for a broad class of (approximation) vertex-deletion problems from (general) disk graphs to disk graphs of bounded local radius, which is a new invariant of disk graphs introduced in this work. Disk graphs of bounded local radius can be viewed as a mild generalization of planar graphs, which preserves certain nice properties of planar graphs. Specifically, we prove that disk graphs of bounded local radius admit the Excluded Grid Minor property and have locally bounded treewidth. This allows existing techniques for designing approximation schemes on planar graphs (e.g., bidimensionality and Baker's technique) to be directly applied to disk graphs of bounded local radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源