论文标题

通过可及性分析发现基于视力的控制器的闭环故障

Discovering Closed-Loop Failures of Vision-Based Controllers via Reachability Analysis

论文作者

Chakraborty, Kaustav, Bansal, Somil

论文摘要

机器学习驱动的基于图像的控制器允许机器人系统根据其环境的视觉反馈采取智能动作。了解这些控制器何时会导致系统安全行为对于它们在系统关键应用程序中的整合和工程纠正性安全措施至关重要。现有方法利用基于模拟的测试(或伪造)来找到基于视力的控制器的故障,即导致闭环安全性违规的视觉输入。但是,这些技术不能很好地扩展到涉及高维和复杂的视觉输入(例如RGB图像)的情况。在这项工作中,我们提出了作为汉密尔顿 - 雅各比(HJ)的可及性问题找到闭环视力故障的问题。我们的方法将基于仿真的分析与HJ可及性方法融合在一起,以计算系统的向后可及管(BRT)的近似,即基于视觉控制器下的系统的不安全状态。利用BRT,我们可以仔细,系统地找到系统状态和相应的视觉输入,从而导致闭环故障。随后可以分析这些视觉输入,以找到可能导致失败的输入特征。除了对高维视觉输入的可扩展性外,BRT的明确计算还允许提出的方法捕​​获难以通过随机模拟暴露的非平凡系统故障。我们在两个案例研究上展示了我们的框架,涉及(a)自动室内导航的基于RGB图像的神经网络控制器,以及(b)自动驾驶飞机滑行。

Machine learning driven image-based controllers allow robotic systems to take intelligent actions based on the visual feedback from their environment. Understanding when these controllers might lead to system safety violations is important for their integration in safety-critical applications and engineering corrective safety measures for the system. Existing methods leverage simulation-based testing (or falsification) to find the failures of vision-based controllers, i.e., the visual inputs that lead to closed-loop safety violations. However, these techniques do not scale well to the scenarios involving high-dimensional and complex visual inputs, such as RGB images. In this work, we cast the problem of finding closed-loop vision failures as a Hamilton-Jacobi (HJ) reachability problem. Our approach blends simulation-based analysis with HJ reachability methods to compute an approximation of the backward reachable tube (BRT) of the system, i.e., the set of unsafe states for the system under vision-based controllers. Utilizing the BRT, we can tractably and systematically find the system states and corresponding visual inputs that lead to closed-loop failures. These visual inputs can be subsequently analyzed to find the input characteristics that might have caused the failure. Besides its scalability to high-dimensional visual inputs, an explicit computation of BRT allows the proposed approach to capture non-trivial system failures that are difficult to expose via random simulations. We demonstrate our framework on two case studies involving an RGB image-based neural network controller for (a) autonomous indoor navigation, and (b) autonomous aircraft taxiing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源