论文标题
旋转的相图$ s $ kitaev梯子
Phase diagrams of spin-$S$ Kitaev ladders
论文作者
论文摘要
我们使用精确的分析解决方案(对于$ s = 1/2 $),扰动理论和密度矩阵重新归一化组(DMRG)方法研究了自旋$ kitaev梯子的基态。我们发现一个均匀的效果:在半净值$ s $的情况下,我们发现具有自发对称性破坏(SSB)和对称性保护的拓扑(SPT)顺序的阶段;对于整数$ s $,我们发现SSB和琐碎的顺磁性阶段。我们还研究了各个阶段之间的过渡。值得注意的是,对于半授课$ s $,我们发现两个不同的SPT订单之间的过渡,对于整数$ s $,我们在一个琐碎的阶段发现了不必要的一阶相变
We investigate the ground states of spin-$S$ Kitaev ladders using exact analytical solutions (for $S = 1/2$), perturbation theory, and the density matrix renormalization group (DMRG) method. We find an even-odd effect: in the case of half-integer $S$, we find phases with spontaneous symmetry breaking (SSB) and symmetry-protected topological (SPT) order; for integer $S$, we find SSB and trivial paramagnetic phases. We also study the transitions between the various phases; notably, for half-integer $S$ we find a transition between two distinct SPT orders, and for integer $S$ we find unnecessary first order phase transitions within a trivial phase