论文标题
分享而不分享单线:传送中的控制量子和非经典性
To share and not share a singlet: control qubit and nonclassicality in teleportation
论文作者
论文摘要
叠加原则为我们提供了展现许多令人惊讶的事实的机会。这样一个事实导致纠缠产生,这可能会使一个人从一个位置传送一个未知的量子状态。我们试图了解叠加在量子传送过程中的作用。在量子传送的情况下,我们考虑了一个设置,其中发件人和接收器处于使用最大纠缠状态,并且不使用传送协议中的任何纠缠状态(由Qubit控制)。我们讨论了两个不同的协议:在第一种情况下,发件人和接收者无权使用纠缠时无能为力,而在第二种情况下,即使他们不使用纠缠,他们仍然使用经典通信。完成协议后,我们在控制量子轴上操作Hadamard Gate,测量控制Qubit的状态,并考虑与控制的特定状态相对应的结果。我们将协议的保真度与仅通过经典资源实现的最大保真度进行了比较。特别是,我们提供了在控制Qubit的情况下实现非经典保真度的条件。为了探索是否存在任何量子优势(控制量子盘中存在的叠加的优势),我们将基于控制量子的协议的保真度与在两方处于使用经典混合且不使用最大纠缠状态的情况下实现的基于控制Qubit的协议的保真度。我们观察到,存在定义控制量子量的初始状态的广泛参数,我们的协议为其提供量子优势。为了定量分析叠加的作用,我们讨论了是否可以用在控制量矩位状态中存在的量子相干性来表达量子优势的量。
The superposition principle provides us the opportunity to unfold many surprising facts. One such fact leads to the generation of entanglement which may allow one to teleport an unknown quantum state from one location to another. We try to understand the role of superposition in the process of quantum teleportation. We consider, within the scenario of quantum teleportation, a set-up where the sender and the receiver are in a superposed situation of using a maximally entangled state and not using any entangled state in the teleportation protocol, controlled by a qubit. We address two distinct protocols: in the first case, the sender and the receiver do nothing when they do not have the authority to use entanglement, while in the second case, they still use classical communication even if they do not use entanglement. After accomplishing the protocols, we operate a Hadamard gate on the control qubit, measure the control qubit's state, and consider the outcome corresponding to a particular state of the control. We compare the protocol's fidelity with the maximum fidelity achievable through classical resources only. In particular, we provide conditions to achieve nonclassical fidelity in teleportation, in the presence of the control qubit. To explore if there is any quantum advantage (advantage of superposition present in the control qubit), we compare the fidelities of the control qubit-based protocols with the fidelity achieved in a situation where the two parties are in a classical mixture of using and not using the maximally entangled state. We observe that there exists a wide range of parameters defining the initial state of the control qubit for which our protocols provide quantum advantage. To analyse the role of superposition quantitatively, we discuss whether the amount of quantum advantage can be expressed in terms of quantum coherence present in the state of the control qubit.