论文标题
最小程度的最小程度(\ emph {n} -10) - 临界图
Minimum degree of minimal (\emph{n}-10)-factor-critical graphs
论文作者
论文摘要
图$ g $的订单$ n $据说为$ k $ - 临界器 - 关键 对于整数$ 1 \ leq k <n $,如果删除任何$ k $ 顶点导致图形具有完美的匹配。 a $ k $ - 因素 - 关键图$ g $ 如果对于E(g)$中的任何边缘$ e \,则称为最小值,$ g-e $不是$ k $ - 因素 - 批判性。 1998年,O。Favaron和M. Shi猜想了每个最小$ k $ - 比例 - 关键图 订单$ n $的最低度$ k+1 $,并以$ k = 1,n-2,n-4 $和$ n-6 $确认它。 通过使用新颖的方法,我们在上一篇论文中以$ k = n -8 $确认了它。 继续使用这种方法,我们证明了本文中$ k = n-10 $的猜想是正确的。
A graph $G$ of order $n$ is said to be $k$-factor-critical for integers $1\leq k < n$, if the removal of any $k$ vertices results in a graph with a perfect matching. A $k$-factor-critical graph $G$ is called minimal if for any edge $e\in E(G)$, $G-e$ is not $k$-factor-critical. In 1998, O. Favaron and M. Shi conjectured that every minimal $k$-factor-critical graph of order $n$ has the minimum degree $k+1$ and confirmed it for $k=1, n-2, n-4$ and $n-6$. By using a novel approach, we have confirmed it for $k = n - 8$ in a previous paper. Continuing this method, we prove the conjecture to be true for $k=n-10$ in this paper.