论文标题

Riesz类型标准$ L $ functions in Selberg类

Riesz type criteria for $L$-functions in the Selberg class

论文作者

Gupta, Shivajee, Vatwani, Akshaa

论文摘要

我们在属于Selberg类的$ l $ functions中制定Riesz型标准的概括。我们获得了一个标准,该标准对于$ l $ functions满足Selberg类的公理而不将Ramanujan假设施加在其系数上的情况下,就足以满足$ l $ functions的大分假设(GRH)。我们还构建了Selberg类的子类,并证明了该子类中$ l $ functions的GRH的必要标准。在这种情况下,还建立了Ramanujan-Hardy-Littlewood类型的身份,其特定情况会产生新的转换公式,涉及Meijer $ G $ - 功能的特殊值$ G^{N \ 0} _ {0 \ n} $。

We formulate a generalization of Riesz-type criteria in the setting of $L$-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the Grand Riemann Hypothesis (GRH) for $L$-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for $L$-functions in this subclass. Identities of Ramanujan-Hardy-Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer $G$-function of the type $G^{n \ 0}_{0 \ n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源