论文标题
内而外:在农业中,用于机器学习应用的实验室种植植物的图像
Inside Out: Transforming Images of Lab-Grown Plants for Machine Learning Applications in Agriculture
论文作者
论文摘要
机器学习任务通常需要大量的培训数据才能使结果网络适当地为任何领域的给定问题执行。在农业中,数据集大小通常受到同一基因型的两种植物之间的表型差异的进一步限制,这通常是由于不同的生长条件而导致的。当没有真实数据可用时,合成的数据集在改善现有模型方面已显示出希望。在本文中,我们采用了对比的未配对翻译(切割)生成对抗网络(GAN)和简单的图像处理技术来翻译室内植物图像以显示为现场图像。当我们训练网络以翻译仅包含单个工厂的图像时,我们表明我们的方法很容易扩展以产生多工厂的现场图像。此外,我们使用合成的多植物图像来训练多个Yolov5 Nano对象检测模型,以执行植物检测的任务并测量模型在实际场数据图像上的准确性。与仅根据实际数据训练的网络相比,包括切割机器人生成的训练数据可提高植物检测性能。
Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of differing growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available. In this paper, we employ a contrastive unpaired translation (CUT) generative adversarial network (GAN) and simple image processing techniques to translate indoor plant images to appear as field images. While we train our network to translate an image containing only a single plant, we show that our method is easily extendable to produce multiple-plant field images. Furthermore, we use our synthetic multi-plant images to train several YoloV5 nano object detection models to perform the task of plant detection and measure the accuracy of the model on real field data images. Including training data generated by the CUT-GAN leads to better plant detection performance compared to a network trained solely on real data.