论文标题
学习用于RGBD跟踪的双拟合模式感知表示
Learning Dual-Fused Modality-Aware Representations for RGBD Tracking
论文作者
论文摘要
近年来,随着深度传感器的发展,RGBD对象跟踪受到了极大的关注。与传统的RGB对象跟踪相比,深度模式的添加可以有效地解决目标和背景干扰。但是,某些现有的RGBD跟踪器分别使用这两种方式,因此忽略了它们之间的一些特别有用的共享信息。另一方面,某些方法试图通过平等对待两种方式来融合这两种方式,从而导致缺少特定于模态的特征。为了应对这些限制,我们提出了一种新颖的双粘合模式感知跟踪器(称为DMTRACKER),该追踪器旨在学习目标对象的信息性和歧视性表示,以实现强大的RGBD跟踪。第一个融合模块的重点是基于跨模式的注意力在模态之间提取共享信息。第二个目的是集成RGB特定和深度特定信息以增强融合功能。通过将模态共享和模式特定信息融合在模式感知方案中,我们的DMTRACKER可以在复杂的跟踪场景中学习判别性表示。实验表明,我们提出的跟踪器在具有挑战性的RGBD基准方面取得了非常有希望的结果。
With the development of depth sensors in recent years, RGBD object tracking has received significant attention. Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference. However, some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored. On the other hand, some methods attempt to fuse the two modalities by treating them equally, resulting in the missing of modality-specific features. To tackle these limitations, we propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking. The first fusion module focuses on extracting the shared information between modalities based on cross-modal attention. The second aims at integrating the RGB-specific and depth-specific information to enhance the fused features. By fusing both the modality-shared and modality-specific information in a modality-aware scheme, our DMTracker can learn discriminative representations in complex tracking scenes. Experiments show that our proposed tracker achieves very promising results on challenging RGBD benchmarks.