论文标题

显式相关的双重混合DFT对振动频率有利吗?

Is explicitly correlated double hybrid DFT advantageous for vibrational frequencies?

论文作者

Mehta, Nisha, Santra, Golokesh, Martin, Jan M. L.

论文摘要

我们已经研究了F12 Geminals对使用两个代表性的双杂交密度函数计算的谐波频率集合的效果,即B2GP-PLYP和REVDSD-PBEP86-D4。就像以前发现的能量学[N. Mehta和J. M. L. Martin,\ Textit {J。化学理论。 comput。} \ textbf {18},5978--5991(2022)]一个人通过两个zeta步骤看到加速度,以便甚至CC-PVDZ-F12基集也非常接近完整的基集(CBS)限制。但是,基集集合问题并不像能量学那样急剧,与实验性谐波频率相比,具有增强三重ZETA质量基集的常规轨道计算可以接受,可以接近CBS限制,并且可以使用分析第二个衍生物进行。双重混合F12分析衍生物的有效实施将使F12方法具有吸引力,因为即使是$ spd $轨道基集也是足够的。为了获得准确的REVDSD-PBEP86-D4功能,已经研究了不同的局部相关项(Perdew-Zunger 1981 vs. VWN5)在不同的电子结构程序中的作用:虽然最佳的双重混合参数和能量的性能统计数据和频率的频率以及两种差异之间的频率略有不同,这些差异是实践中的实用性。

We have investigated the effect of F12 geminals on the basis set convergence of harmonic frequencies calculated using two representative double-hybrid density functionals, namely B2GP-PLYP and revDSD-PBEP86-D4. Like previously found for energetics [N. Mehta and J. M. L. Martin, \textit{J. Chem. Theor. Comput.} \textbf{18}, 5978--5991 (2022)] one sees an acceleration by two zeta steps, such that even the cc-pVDZ-F12 basis set is quite close to the complete basis set (CBS) limit. However, the basis set convergence problem is not as acute as for energetics, and compared to experimental harmonic frequencies, conventional orbital calculations with augmented triple zeta quality basis set are acceptably close to the CBS limit, and can be carried out using analytical second derivatives. An efficient implementation of double hybrid-F12 analytical derivatives would make the F12 approach attractive in the sense that even an $spd$ orbital basis set would be adequate. For the accurate revDSD-PBEP86-D4 functional, the role of differing local correlation terms (Perdew-Zunger 1981 vs. VWN5) in different electronic structure programs has been investigated: while optimal double hybrid parameters and performance statistics for energetics as well as frequencies differ slightly between the two implementations, these differences are insignificant for practical purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源