论文标题

Middlegan:生成无监督域适应性的域不可知论样本

MiddleGAN: Generate Domain Agnostic Samples for Unsupervised Domain Adaptation

论文作者

Gao, Ye, Chu, Zhendong, Wang, Hongning, Stankovic, John

论文摘要

近年来,机器学习在不同的应用领域取得了令人印象深刻的结果。但是,机器学习算法不一定在与培训集不同的新域上表现良好。域适应(DA)用于减轻此问题。现有DA算法的一种方法是找到域不变特征,其在源域中的分布与目标域中的分布相同。在本文中,我们建议让在目标域上执行最终分类任务的分类器隐含地学习执行分类的不变功能。它是通过在训练产生的假样品中喂食分类器来实现的,这些样本类似于来自源和目标域的样品。我们称这些生成的样品域 - 不可吻合的样品。为了实现这一目标,我们提出了一种称为Middlegan的生成对抗网络(GAN)的新型变化,该变化使用两个歧视器和一个生成器生成了类似于来自源和目标域的样本的假样品。我们扩展了GAN的理论,以表明存在两个歧视因子的参数和Middlegan中一个发电机的最佳解,并经验表明,Middlegan生成的样品与来自源域的样本和来自目标域的样本相似。我们使用24个基准进行了广泛的评估。在24个基准测试中,我们将Middlegan与各种最先进的算法进行比较,并在某些基准测试中优于最高最高20.1 \%。

In recent years, machine learning has achieved impressive results across different application areas. However, machine learning algorithms do not necessarily perform well on a new domain with a different distribution than its training set. Domain Adaptation (DA) is used to mitigate this problem. One approach of existing DA algorithms is to find domain invariant features whose distributions in the source domain are the same as their distribution in the target domain. In this paper, we propose to let the classifier that performs the final classification task on the target domain learn implicitly the invariant features to perform classification. It is achieved via feeding the classifier during training generated fake samples that are similar to samples from both the source and target domains. We call these generated samples domain-agnostic samples. To accomplish this we propose a novel variation of generative adversarial networks (GAN), called the MiddleGAN, that generates fake samples that are similar to samples from both the source and target domains, using two discriminators and one generator. We extend the theory of GAN to show that there exist optimal solutions for the parameters of the two discriminators and one generator in MiddleGAN, and empirically show that the samples generated by the MiddleGAN are similar to both samples from the source domain and samples from the target domain. We conducted extensive evaluations using 24 benchmarks; on the 24 benchmarks, we compare MiddleGAN against various state-of-the-art algorithms and outperform the state-of-the-art by up to 20.1\% on certain benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源