论文标题
通过因果机器学习个性化可持续农业
Personalizing Sustainable Agriculture with Causal Machine Learning
论文作者
论文摘要
为了抵抗气候变化并适应人口增长,必须加强全球作物产量。为了实现农业的“可持续加强”,将其从碳发射极变成碳汇是一个优先事项,了解农业管理实践的环境影响是对此的基本先决条件。同时,全球农业景观是深深的异质性,气候,土壤和土地利用的差异引起了农业系统对农民行动的反应方式的差异。因此,可持续农业的“个性化”通过提供本地改编的管理建议是有效提升绿色指标的必要条件,并且是迫在眉睫的政策中不可或缺的发展。在这里,我们将个性化的可持续农业制定为有条件的平均治疗效果估计任务,并使用因果机器学习来解决它。利用气候数据,土地使用信息和采用双机器学习,我们估计可持续实践对立陶宛现场水平土壤有机碳含量的异质作用。因此,我们提供了一个以数据为导向的观点来定位可持续实践并有效扩大全球碳汇。
To fight climate change and accommodate the increasing population, global crop production has to be strengthened. To achieve the "sustainable intensification" of agriculture, transforming it from carbon emitter to carbon sink is a priority, and understanding the environmental impact of agricultural management practices is a fundamental prerequisite to that. At the same time, the global agricultural landscape is deeply heterogeneous, with differences in climate, soil, and land use inducing variations in how agricultural systems respond to farmer actions. The "personalization" of sustainable agriculture with the provision of locally adapted management advice is thus a necessary condition for the efficient uplift of green metrics, and an integral development in imminent policies. Here, we formulate personalized sustainable agriculture as a Conditional Average Treatment Effect estimation task and use Causal Machine Learning for tackling it. Leveraging climate data, land use information and employing Double Machine Learning, we estimate the heterogeneous effect of sustainable practices on the field-level Soil Organic Carbon content in Lithuania. We thus provide a data-driven perspective for targeting sustainable practices and effectively expanding the global carbon sink.