论文标题
无序的Weyl半法的异常大厅效应
Anomalous Hall effect in disordered Weyl semimetals
论文作者
论文摘要
我们研究了无序的Weyl半学的异常霍尔效应。虽然固有的贡献仅以浆果曲率表示,但外部贡献是通过偏斜散射和侧跳项的组合给出的。对于小型杂质的模型,我们能够以散射相移的方式表达偏斜的散射贡献。我们确定了偏斜散射贡献主导侧跳的贡献的状态:杂质要么很强,要么具有稀释浓度。在此制度中,大厅的电阻率$ρ_{xy} $用两个散射阶段表示,类似于非居民金属中的S波散射阶段。我们计算$ρ_{xy} $对化学电位的依赖性,并证明$ρ_{xy} $缩放温度为$ t^2 $在低温下,在高温限制中为$ t^{3/2} $。
We study the anomalous Hall effect in a disordered Weyl semimetal. While the intrinsic contribution is expressed solely in terms of Berry curvature, the extrinsic contribution is given by a combination of the skew scattering and side jump terms. For the model of small size impurities, we are able to express the skew scattering contribution in terms of scattering phase shifts. We identify the regime in which the skew scattering contribution dominates the side-jump contribution: the impurities are either strong or resonant, and at dilute concentration. In this regime, the Hall resistivity $ρ_{xy}$ is expressed in terms of two scattering phases, analogous to the s-wave scattering phase in a non-topological metal. We compute the dependence of $ρ_{xy}$ on the chemical potential, and show that $ρ_{xy}$ scales with temperature as $T^2$ in low temperatures and as $T^{3/2}$ in the high temperature limit.