论文标题
在非建筑本地领域上的还原群体的代数Brauer组
The algebraic Brauer group of a reductive group over a nonarchimedean local field
论文作者
论文摘要
我们表明,对于非架构的本地字段$ f $,从$ g(f)$中的所有连续同构$ g $组成的brauer组的配对,将所有连续的同型同构特征为$ \ \ \ \ \ m athbb {q}/\ mathbb {Z} $。这概括了Loughran和Loughran-Tanimoto-Takloo-Bighash的结果。
We show that for nonarchimedean local fields $F$, the pairing from the algebraic part of the Brauer group of a reductive group $G$ characterizes all continuous homomorphisms from $G(F)$ into $\mathbb{Q}/\mathbb{Z}$. This generalizes results of Loughran and Loughran-Tanimoto-Takloo-Bighash.