论文标题
FröhlichPolaron在强耦合处 - 第二部分:能量摩托车的关系和有效质量
The Fröhlich Polaron at Strong Coupling -- Part II: Energy-Momentum Relation and Effective Mass
论文作者
论文摘要
我们在$ \ mathbb {r}^3 $中研究FröhlichPolaron模型,并证明其在其基态能量的下限是总动量的函数。界限在大耦合时渐近。结合以前证明的相应的上限,它表明能量大约在连续阈值以下抛物面,并且著名的Landau-Pekar公式给出了二极管的有效质量(定义为抛物线的半拉托直肠)。特别是,对于大耦合常数$α$,它的分歧为$α^4 $。
We study the Fröhlich polaron model in $\mathbb{R}^3$, and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier, it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron's effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau--Pekar formula. In particular, it diverges as $α^4$ for large coupling constant $α$.