论文标题
傅立叶模型生成Feynman路径
Fourier-Flow model generating Feynman paths
论文作者
论文摘要
作为量子物理学的替代方案但统一的,更基本的描述,Feynman Path积分将经典的行动原理推广到概率的观点,根据该观点,物理可观察物的估计在所有可能的路径上转化为加权总和。根本的困难是从有限的样品中应对整个路径歧管,这些样品可以有效地表示Feynman繁殖者指示的概率分布。机器学习中的现代生成模型可以以高计算效率来处理学习和表示概率分布。在这项研究中,我们提出了一个傅立叶生成模型,以模拟Feynman传播器并为量子系统生成路径。作为示范,我们验证了谐波和无谐振荡器上的路径发生器。后者是没有分析解决方案的双孔系统。为了保留系统的周期性条件,将傅立叶变换引入流程模型中以接近Matsubara表示。通过这种新颖的发展,准确估算了基层波函数和低洼的能级。我们的方法为使用机器学习协助Feynman路径积分解决方案提供了新的途径来研究量子系统。
As an alternative but unified and more fundamental description for quantum physics, Feynman path integrals generalize the classical action principle to a probabilistic perspective, under which the physical observables' estimation translates into a weighted sum over all possible paths. The underlying difficulty is to tackle the whole path manifold from finite samples that can effectively represent the Feynman propagator dictated probability distribution. Modern generative models in machine learning can handle learning and representing probability distribution with high computational efficiency. In this study, we propose a Fourier-flow generative model to simulate the Feynman propagator and generate paths for quantum systems. As demonstration, we validate the path generator on the harmonic and anharmonic oscillators. The latter is a double-well system without analytic solutions. To preserve the periodic condition for the system, the Fourier transformation is introduced into the flow model to approach a Matsubara representation. With this novel development, the ground-state wave function and low-lying energy levels are estimated accurately. Our method offers a new avenue to investigate quantum systems with machine learning assisted Feynman Path integral solving.