论文标题

最佳确定性确定性在森林上大规模平行连接

Optimal Deterministic Massively Parallel Connectivity on Forests

论文作者

Balliu, Alkida, Latypov, Rustam, Maus, Yannic, Olivetti, Dennis, Uitto, Jara

论文摘要

我们显示了众所周知的大型平行计算(MPC)模型的森林基本问题的快速确定性算法。 Coy和Czumaj [stoc'22]最近的突破表明,在这种情况下,可以确定性地识别$ O(\ log d + \ log \ log \ log \ log \ log \ log n)$ grounds上的图形上的连接组件,其中$ d $是图形的直径和$ n $ nodes的数量。作者留下了一个主要的问题:是否可以摆脱添加$ \ log \ log n $ factor,并确定性地识别完全独立于$ n $的运行时的连接组件? 在森林的情况下,我们在肯定的肯定中回答了上述问题。我们提供了一种算法,该算法在$ O(\ log d)$确定性回合中标识了连接的组件。所需的总内存为$ O(n+m)$单词,其中$ m $是输入图中的边数,这是最佳的,因为它仅足以存储输入图。我们通过证明$ω(\ log d)$时间是必要的,即使对于组件 - 不稳定算法也是必需的,我们可以补充上限的结果,该算法是基于广泛认为的1 vs. 2个周期的猜想的条件。我们的技术还具有相同的运行时和内存界限的确定性森林根源算法。 此外,我们考虑当地可检查的标签问题(LCLS),可以通过检查每个节点的$ O(1)$半径邻域来验证其解决方案。我们证明,森林上的任何LCL问题都可以在$ o(\ log d)$ rounds中使用规范确定性算法解决,从而改善了Brandt,Latypov和Uitto [Disc'21]的$ O(\ log n)$运行时。我们还表明,没有算法可以更快地解决树木上的所有LCL问题。

We show fast deterministic algorithms for fundamental problems on forests in the challenging low-space regime of the well-known Massive Parallel Computation (MPC) model. A recent breakthrough result by Coy and Czumaj [STOC'22] shows that, in this setting, it is possible to deterministically identify connected components on graphs in $O(\log D + \log\log n)$ rounds, where $D$ is the diameter of the graph and $n$ the number of nodes. The authors left open a major question: is it possible to get rid of the additive $\log\log n$ factor and deterministically identify connected components in a runtime that is completely independent of $n$? We answer the above question in the affirmative in the case of forests. We give an algorithm that identifies connected components in $O(\log D)$ deterministic rounds. The total memory required is $O(n+m)$ words, where $m$ is the number of edges in the input graph, which is optimal as it is only enough to store the input graph. We complement our upper bound results by showing that $Ω(\log D)$ time is necessary even for component-unstable algorithms, conditioned on the widely believed 1 vs. 2 cycles conjecture. Our techniques also yield a deterministic forest-rooting algorithm with the same runtime and memory bounds. Furthermore, we consider Locally Checkable Labeling problems (LCLs), whose solution can be verified by checking the $O(1)$-radius neighborhood of each node. We show that any LCL problem on forests can be solved in $O(\log D)$ rounds with a canonical deterministic algorithm, improving over the $O(\log n)$ runtime of Brandt, Latypov and Uitto [DISC'21]. We also show that there is no algorithm that solves all LCL problems on trees asymptotically faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源