论文标题
具有异质过滤光谱提示的图像完成
Image Completion with Heterogeneously Filtered Spectral Hints
论文作者
论文摘要
对于计算机视觉社区来说,具有大规模自由形式缺失区域的图像完成是最具挑战性的任务之一。尽管研究人员追求更好的解决方案,但诸如模式不认识,模糊纹理和结构失真等缺点仍然很明显,因此为改进而留下了空间。为了克服这些挑战,我们提出了一个新的基于样式的图像完成网络,Spectral Them Thint Gan(SH-GAN),其中引入了精心设计的光谱处理模块,Spectral提示单元。我们还提出了两种新颖的2D光谱处理策略,异质过滤和高斯分裂,该策略良好的现代深度学习模型,并可能进一步扩展到其他任务。从我们的包容性实验中,我们证明了我们的模型可以在基准数据集FFHQ和Place2上达到3.4134和7.0277的FID分数,因此优于先前的工作,并达到新的最新技术。我们还通过消融研究证明了设计的有效性,从中可能会注意到上述挑战,即模式不认识,模糊纹理和结构失真,可以明显解决。我们的代码将在以下位置开源:https://github.com/shi-labs/sh-gan。
Image completion with large-scale free-form missing regions is one of the most challenging tasks for the computer vision community. While researchers pursue better solutions, drawbacks such as pattern unawareness, blurry textures, and structure distortion remain noticeable, and thus leave space for improvement. To overcome these challenges, we propose a new StyleGAN-based image completion network, Spectral Hint GAN (SH-GAN), inside which a carefully designed spectral processing module, Spectral Hint Unit, is introduced. We also propose two novel 2D spectral processing strategies, Heterogeneous Filtering and Gaussian Split that well-fit modern deep learning models and may further be extended to other tasks. From our inclusive experiments, we demonstrate that our model can reach FID scores of 3.4134 and 7.0277 on the benchmark datasets FFHQ and Places2, and therefore outperforms prior works and reaches a new state-of-the-art. We also prove the effectiveness of our design via ablation studies, from which one may notice that the aforementioned challenges, i.e. pattern unawareness, blurry textures, and structure distortion, can be noticeably resolved. Our code will be open-sourced at: https://github.com/SHI-Labs/SH-GAN.