论文标题

素描的伪verseverse的渐近学

Asymptotics of the Sketched Pseudoinverse

论文作者

LeJeune, Daniel, Patil, Pratik, Javadi, Hamid, Baraniuk, Richard G., Tibshirani, Ryan J.

论文摘要

我们采用一种随机矩阵理论方法来随机素描并显示阳性半芬属基质的正则素描拟尺的伪造伪型,以对同一矩阵的分辨率进行一定的评估。我们专注于实现的正则化,并扩展了先前的结果,即随机矩阵的渐近等效性与实际设置的渐近等效性,即使在负正规化下,也提供了对等效性的精确表征,包括对草图基质的最小非特征值的精确表征,这可能是独立的。然后,我们进一步表征了绘制的伪字词的二阶等效性。我们还将结果应用于草图和项目方法的分析以及素描的山脊回归。最后,我们证明这些结果推广到渐近素描矩阵,从而获得正交草图矩阵的结果等效性,并将我们的结果与实践中使用的几个常见草图进行了比较。

We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Lastly, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源