论文标题
部分可观测时空混沌系统的无模型预测
Editable Indoor Lighting Estimation
论文作者
论文摘要
我们提出了一种从室内场景的单个角度图像估算照明的方法。预测室内照明的先前方法通常集中在缺乏现实主义的简单,参数照明上,或者在预测后难以理解或不可能理解或修改的更丰富的表示。我们提出了一条管道,该管道估算一个易于编辑的参数光,并允许具有强烈阴影的渲染,以及具有非参数纹理,并具有与镜面对象进行现实渲染所需的高频信息。一旦估计,使用我们的模型获得的预测是可以解释的,并且可以通过几个鼠标点击轻松地由艺术家/用户修改。定量和定性结果表明,我们的方法使室内照明估计更容易被休闲用户处理,同时仍会产生竞争成果。
We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.