论文标题

部分可观测时空混沌系统的无模型预测

Detecting Hidden Communities by Power Iterations with Connections to Vanilla Spectral Algorithms

论文作者

Mukherjee, Chandra Sekhar, Zhang, Jiapeng

论文摘要

随机块模型中的社区检测是图集聚类的中心问题之一。自引入以来,许多随后的论文在解决和理解该模型方面取得了长足的进步。在此设置中,光谱算法一直是使用最广泛的框架之一。但是,尽管研究的历史悠久,但仍然存在尚未解决的挑战。主要的开放问题之一是对“简单”(香草)光谱算法的设计和分析,尤其是当社区数量较大时。 在本文中,我们提供两种算法。第一个是基于功率介质方法。这是一种简单的算法,仅比较了动力邻接矩阵的行。与van Vu的密集图制度中最著名的界限相比,我们的算法最佳(与对数因素达到对数因素)(Combinatorics概率与计算,2018年)。此外,我们的算法对“小簇屏障”也很强,在存在任意数量的小簇的情况下恢复了大簇。然后,基于在均衡情况下,我们为大量社区提供了一种香草光谱算法之间的有能力的邻接矩阵与特征向量之间的联系。这回答了Van Vu的一个公开问题(Combinatorics概率与计算,2018年)在平衡的情况下。我们的方法还部分解决了Abbe,Fan,Wang和Zhong(统计年鉴,2020年)讨论的技术障碍。 在技​​术方面,我们引入了一种随机分区方法,以分析动力随机矩阵的每个条目。该方法可以看作是Wigner的跟踪方法的特征向量版本。回想一下,Wigner的跟踪方法将功率矩阵的轨迹与特征值联系起来。我们的方法将整个动力矩阵连接到特征向量的跨度。我们希望我们的方法在随机矩阵理论中具有更多的应用。

Community detection in the stochastic block model is one of the central problems of graph clustering. Since its introduction, many subsequent papers have made great strides in solving and understanding this model. In this setup, spectral algorithms have been one of the most widely used frameworks. However, despite the long history of study, there are still unsolved challenges. One of the main open problems is the design and analysis of "simple"(vanilla) spectral algorithms, especially when the number of communities is large. In this paper, we provide two algorithms. The first one is based on the power-iteration method. It is a simple algorithm which only compares the rows of the powered adjacency matrix. Our algorithm performs optimally (up to logarithmic factors) compared to the best known bounds in the dense graph regime by Van Vu (Combinatorics Probability and Computing, 2018). Furthermore, our algorithm is also robust to the "small cluster barrier", recovering large clusters in the presence of an arbitrary number of small clusters. Then based on a connection between the powered adjacency matrix and eigenvectors, we provide a vanilla spectral algorithm for large number of communities in the balanced case. This answers an open question by Van Vu (Combinatorics Probability and Computing, 2018) in the balanced case. Our methods also partially solve technical barriers discussed by Abbe, Fan, Wang and Zhong (Annals of Statistics, 2020). In the technical side, we introduce a random partition method to analyze each entry of a powered random matrix. This method can be viewed as an eigenvector version of Wigner's trace method. Recall that Wigner's trace method links the trace of powered matrix to eigenvalues. Our method links the whole powered matrix to the span of eigenvectors. We expect our method to have more applications in random matrix theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源