论文标题
部分可观测时空混沌系统的无模型预测
A size-consistent Grüneisen-quasiharmonic approach for lattice thermal conductivity
论文作者
论文摘要
我们提出了一种符合大小的grüneisen-quasiharmonic方法(GQA)来计算晶状体导热率$κ_l$,其中使用首先计算直接计算了grüneisen参数,该参数是直接计算了声子非谐度的程度。这是通过识别和修改与$κ_l$相关的两个现有方程式来实现的,这些方程式在处理非共同原始原始细胞时遇到了尺寸 - 不一致问题(其中原始细胞$ n $中的原子数量大于一个)。结合其他热参数,例如在GQA内获得的声学debye温度$θ_A$,我们预测从钻石,锌蓝,岩石,岩石和wurtzite化合物中获得的一系列材料的$κ_l$。将结果与实验和Quasiharmonic Debye模型(QDM)进行了比较。我们发现,在GQA,实验和QDM中,$θ_A$的预测相当一致。但是,尽管QDM在某种程度上高估了grüneisen参数,因此低估了大多数材料的$κ_l$,但GQA预测了Grüneisen参数的实验趋势和$κ_l$的实验趋势。我们希望带有改良的松弛配方的GQA可以用作$κ_l$的有效且实用的预测指标,尤其是对于具有$ n $的晶体的晶体。
We propose a size-consistent Grüneisen-quasiharmonic approach (GQA) to calculate the lattice thermal conductivity $κ_l$ where the Grüneisen parameters that measure the degree of phonon anharmonicity are calculated directly using first-principles calculations. This is achieved by identifying and modifying two existing equations related to the Slack formulae for $κ_l$ that suffer from the size-inconsistency problem when dealing with non-monoatomic primitive cells (where the number of atoms in the primitive cell $n$ is greater than one). In conjunction with other thermal parameters such as the acoustic Debye temperature $θ_a$ that can also be obtained within the GQA, we predict $κ_l$ for a range of materials taken from the diamond, zincblende, rocksalt, and wurtzite compounds. The results are compared with that from the experiment and the quasiharmonic Debye model (QDM). We find that in general the prediction of $θ_a$ is rather consistent among the GQA, experiment, and QDM. However, while the QDM somewhat overestimates the Grüneisen parameters and hence underestimates $κ_l$ for most materials, the GQA predicts the experimental trends of Grüneisen parameters and $κ_l$ more closely. We expect the GQA with the modified Slack formulae could be used as an effective and practical predictor for $κ_l$, especially for crystals with large $n$.