论文标题
部分可观测时空混沌系统的无模型预测
Normalizers of Sylow subgroups in finite reflection groups
论文作者
论文摘要
令$ w $为一个有限的反射组,无论是真实的还是复杂的,$ s \ ell $ a sylow $ \ ell $ -subgroup $ w $。我们证明存在$ n_w(s_ \ ell)$的半领产品分解,这是$ w $的独特抛物线子组,含有$ s_ \ ell $,以及抛物线子组正常化的已知分解。在实际环境中,描述遵循Sylow $ \ ell $ -subgroup的存在,在有限反射组的Coxeter图自动形态下稳定,而没有包含Sylow $ \ ell $ -subgroup的适当抛物线子组。
Let $W$ be a finite reflection group, either real or complex, and $S_\ell$ a Sylow $\ell$-subgroup of $W$. We prove the existence of a semidirect product decomposition of $N_W(S_\ell)$ in terms of the unique parabolic subgroup of $W$ minimally containing $S_\ell$ and known decompositions of normalizers of parabolic subgroups. In the real setting, the description follows from the existence of Sylow $\ell$-subgroups stable under the Coxeter diagram automorphisms of finite reflection groups with no proper parabolic subgroup containing a Sylow $\ell$-subgroup.