论文标题
张量三角类别的特性和动作
Costratification and actions of tensor-triangulated categories
论文作者
论文摘要
在史蒂文森的意义上,我们在相对张量 - 三角形几何形状的设置中发展了特性化理论,为Neeman和Benson和Benson(Iyyengar)(Iyyengar)(Iyyengar)提供了统一的分类方法,同时为未来的应用奠定了基础。此外,我们介绍并研究了主要的本地化群,并将主要共定位化$ \ mathrm {hom} $ - subsodules,在第一种情况下,将Objectwise-Prime局部局部化张量思想概括。我们将结果应用于表明,在Noetherian分离方案上的准搭换滑轮的派生类别已被化为特征。
We develop the theory of costratification in the setting of relative tensor-triangular geometry, in the sense of Stevenson, providing a unified approach to classification results of Neeman and Benson--Iyengar--Krause, while laying the foundations for future applications. In addition, we introduce and study prime localizing submodules and prime colocalizing $\mathrm{hom}$-submodules, in the first case, generalizing objectwise-prime localizing tensor-ideals. We apply our results to show that the derived category of quasi-coherent sheaves over a noetherian separated scheme is costratified.