论文标题
来自偏心紧凑型二进制灵感的重力波的球形谐波模式的自旋效应
Spin effects in Spherical Harmonic Modes of Gravitational Waves from Eccentric Compact Binary Inspirals
论文作者
论文摘要
我们通过在非圆形轨道中具有非不必要成分的灵感紧凑型二进制物中的带有引力波形的球形谐波模式,通过第二个后牛顿后秩序(2pn)计算领先的和子领先的自旋效应。在2pn波形中出现的两个自旋耦合,即线性旋转(旋转轨道; SO)和二次旋转旋转(Spin-Spin; ss),以所需的精度计算,并且得出相关模式的明确表达式。通过2pn进行旋转校正的模式包括$(\ ell,| m |)$ = $((2,2),\,(2,1),\,(3,3),\,\,(3,2),\,(3,1),\,\,(4,3),(4,3),\,(4,11))$模式。这些模式在一般轨道和椭圆轨道中的紧凑型二进制模式的封闭形式表达式正在提供。虽然一般的轨道结果可用于研究来自任意形状和性质轨道的二进制文件的信号,但椭圆形轨道结果适用于任意偏心率的系统。我们还表达了椭圆轨道的结果,作为圆形结果的偏心校正。我们的处方代表了将旋转,偏心率和更高模式结合在一起的第一种完全分析的处理,并通过2PN顺序完成了自旋效应的计算。这些应该在Inspiral-Merger-Ringdown建模中为偏心合并找到即时应用,包括非临时旋转和更高模式的效果以及使用Inspiral Woveform的参数估计分析中的效果。
We compute the leading and sub-leading spin effects through the second post-Newtonian order (2PN) in spherical harmonic modes of gravitational waveforms from inspiralling compact binaries in non-circular orbits with non-precessing components. The two spin couplings, linear-in-spin (spin-orbit; SO) and quadratic-in-spin (spin-spin; SS), that appear in 2PN waveforms are computed with desired accuracy and explicit expressions for relevant modes are derived. The modes that have spin corrections through 2PN include $(\ell, |m|)$=$((2,2),\,(2,1),\,(3,3),\,(3,2),\,(3,1),\,(4,3),\,(4,1))$ modes. Closed form expressions for these modes for compact binaries in general orbits as well as in elliptical orbits are being provided. While the general orbit results can be used to study signals from binaries in orbits of arbitrary shape and nature, elliptical orbit results are applicable to systems with arbitrary eccentricities. We also express the elliptical orbit results as leading eccentric corrections to the circular results. Our prescription represents, the first, fully analytical treatment that combines spins, eccentricity and higher modes together and completes computation of spin effects through 2PN order. These should find immediate applications in inspiral-merger-ringdown modelling for eccentric mergers including the effect of non-precessing spins and higher modes as well as in parameter estimation analyses employing inspiral waveform.