论文标题

动态损失平衡和路线安全评估和交通现场分类的顺序增强

Dynamic loss balancing and sequential enhancement for road-safety assessment and traffic scene classification

论文作者

Kačan, Marin, Ševrović, Marko, Šegvić, Siniša

论文摘要

道路安全检查是减少有助于道路基础设施的道路事故死亡的必不可少的工具。最近的工作以精心选择的风险因素的方式将道路安全评估正式化,这些风险因素也称为道路安全属性。在目前的实践中,这些属性在每个路段的地理参考单眼视频中手动注释。我们建议通过使用两阶段的神经结构自动化识别来减少对乏味的人工劳动的依赖。第一阶段通过观察局部时空环境来预测40多个道路安全属性。我们的设计利用了有效的卷积管道,该管道受益于街道场景的语义细分的预训练。第二阶段通过跨较大的时间窗口的顺序集成来增强预测。我们的设计利用了轻巧双向LSTM体系结构的每个属性实例。这两个阶段通过结合了基于召回的动态减肥体重的多任务变体,从而减轻了极端阶级的失衡。我们在IRAP-BH数据集上进行实验,该数据集涉及在波斯尼亚和黑塞哥维那的2300公里公共道路上完全标记的地理参考视频。我们还通过将其与文献中的两个道路场景分类数据集的相关工作进行比较:本田场景和FM3M的相关工作来验证我们的方法。实验评估证实了我们在所有三个数据集上的贡献的价值。

Road-safety inspection is an indispensable instrument for reducing road-accident fatalities contributed to road infrastructure. Recent work formalizes road-safety assessment in terms of carefully selected risk factors that are also known as road-safety attributes. In current practice, these attributes are manually annotated in geo-referenced monocular video for each road segment. We propose to reduce dependency on tedious human labor by automating recognition with a two-stage neural architecture. The first stage predicts more than forty road-safety attributes by observing a local spatio-temporal context. Our design leverages an efficient convolutional pipeline, which benefits from pre-training on semantic segmentation of street scenes. The second stage enhances predictions through sequential integration across a larger temporal window. Our design leverages per-attribute instances of a lightweight bidirectional LSTM architecture. Both stages alleviate extreme class imbalance by incorporating a multi-task variant of recall-based dynamic loss weighting. We perform experiments on the iRAP-BH dataset, which involves fully labeled geo-referenced video along 2,300 km of public roads in Bosnia and Herzegovina. We also validate our approach by comparing it with the related work on two road-scene classification datasets from the literature: Honda Scenes and FM3m. Experimental evaluation confirms the value of our contributions on all three datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源