论文标题

迈向自适应语义通信:通过在线学习的非线性转换源通道编码的有效数据传输

Toward Adaptive Semantic Communications: Efficient Data Transmission via Online Learned Nonlinear Transform Source-Channel Coding

论文作者

Dai, Jincheng, Wang, Sixian, Yang, Ke, Tan, Kailin, Qin, Xiaoqi, Si, Zhongwei, Niu, Kai, Zhang, Ping

论文摘要

新兴的现场语义通信正在推动端到端数据传输的研究。通过利用深度学习模型的强大表示能力,学习的数据传输方案比已建立的源和渠道编码方法表现出了卓越的性能。到目前为止,研究工作主要集中在建筑和模型改进到静态目标领域。尽管取得了成功,但由于模型容量的局限性以及不完善的优化和概括,这种学识渊博的模型仍然是最佳的,尤其是当测试数据分布或频道响应与模型培训所采用的响应不同时,就像现实世界中一样。为了解决这个问题,我们提出了一种新颖的在线学习的联合来源和渠道编码方法,该方法利用了深度学习模型的过度拟合属性。具体来说,我们以轻量级的在线方式更新了现成的预训练模型,以适应源数据和环境域的发行变化。我们将过度拟合的概念带到了极端,提出了一系列对实现的方法,以使编解码器模型或表示形式适应单个数据或渠道状态实例,这可以进一步导致带宽比率 - 延伸性能的大幅提高。所提出的方法可以在不牺牲解码速度的情况下对网络中所有参数的通信效率改编。我们的实验(包括用户研究)对不断变化的目标源数据和无线通道环境,证明了我们的方法的有效性和效率,在这些实验中,我们在其上胜过现有的最先进的工程传输方案(VVC与5G LDPC编码变速箱结合使用)。

The emerging field semantic communication is driving the research of end-to-end data transmission. By utilizing the powerful representation ability of deep learning models, learned data transmission schemes have exhibited superior performance than the established source and channel coding methods. While, so far, research efforts mainly concentrated on architecture and model improvements toward a static target domain. Despite their successes, such learned models are still suboptimal due to the limitations in model capacity and imperfect optimization and generalization, particularly when the testing data distribution or channel response is different from that adopted for model training, as is likely to be the case in real-world. To tackle this, we propose a novel online learned joint source and channel coding approach that leverages the deep learning model's overfitting property. Specifically, we update the off-the-shelf pre-trained models after deployment in a lightweight online fashion to adapt to the distribution shifts in source data and environment domain. We take the overfitting concept to the extreme, proposing a series of implementation-friendly methods to adapt the codec model or representations to an individual data or channel state instance, which can further lead to substantial gains in terms of the bandwidth ratio-distortion performance. The proposed methods enable the communication-efficient adaptation for all parameters in the network without sacrificing decoding speed. Our experiments, including user study, on continually changing target source data and wireless channel environments, demonstrate the effectiveness and efficiency of our approach, on which we outperform existing state-of-the-art engineered transmission scheme (VVC combined with 5G LDPC coded transmission).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源