论文标题
多重包装:下限和上限
Multiple Packing: Lower and Upper Bounds
论文作者
论文摘要
我们研究了欧几里得空间中高维多填料的问题。多包装是球体堆积的自然概括,定义如下。令$ n> 0 $和$ l \ in \ mathbb {z} _ {\ ge2} $。多个包装是$ \ Mathbb {r}^n $中点的$ \ MATHCAL {C} $,以至于$ \ Mathbb {r}^n $中的任何点最多在于$ \ sqrt {nn} $ y Mathcal的$ \ sqrt {nn} $ y Mathcal $ \ sqrt {nn} $的交叉点。我们研究了两个有界点集的多个包装问题,它们的点最多具有$ \ sqrt {np} $,对于某些常数$ p> 0 $和无界点集,其点可以允许其在$ \ mathbb {r}^n $中的任何位置。鉴于与编码理论的众所周知的联系,可以将多个包装视为可列表可解码代码的欧几里得类似物,这些代码对有限字段进行了充分研究。在本文中,我们在有限和无限的设置中,在多个填料的最大可能密度上得出了各种界限。还研究了一个称为平均拉迪乌斯多填料的相关概念。我们的一些下限恰好固定在平均radius列表可解码的代码的某些集合的渐近学上,例如(消除的)高斯代码和(消除的)球形代码。特别是,我们从球形代码中获得的下限是最佳的多重填料密度上最著名的下限,并且是在平均多堆积概念下接近已知的大$ l $限制的第一个下限。为了得出这些结果,我们应用了高维几何形状和大偏差理论的工具。
We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study the multiple packing problem for both bounded point sets whose points have norm at most $\sqrt{nP}$ for some constant $P>0$ and unbounded point sets whose points are allowed to be anywhere in $ \mathbb{R}^n $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive various bounds on the largest possible density of a multiple packing in both bounded and unbounded settings. A related notion called average-radius multiple packing is also studied. Some of our lower bounds exactly pin down the asymptotics of certain ensembles of average-radius list-decodable codes, e.g., (expurgated) Gaussian codes and (expurgated) spherical codes. In particular, our lower bound obtained from spherical codes is the best known lower bound on the optimal multiple packing density and is the first lower bound that approaches the known large $L$ limit under the average-radius notion of multiple packing. To derive these results, we apply tools from high-dimensional geometry and large deviation theory.