论文标题

量子不变的量子扰动在量子重力反弹处

Gauge-invariant perturbations at a quantum gravity bounce

论文作者

Gielen, Steffen, Mickel, Lisa

论文摘要

我们研究了具有改良的弗里德曼方程(例如量子重力弹跳宇宙学)在宇宙学场景中量规不变标量扰动的动力学。我们在单独的宇宙近似中工作,该近似捕获了比宇宙学范围更大的波长。该近似已成功地应用于循环量子宇宙学和群体场理论。我们考虑了通常用于表征标量扰动的两个变量:均匀密度高度曲面上的曲率扰动$ζ$和共同的曲率扰动$ \ MATHCAL {R} $。对于一般相对论和环量子宇宙学中的标准宇宙学模型,这些数量是保守的,并且在超级马尺度上进行绝热扰动。在这里,我们表明,尽管这些陈述可以扩展到类似于Loop Quantum宇宙学类似的修改的Friedmann方程的更通用形式,但在其他情况下,例如最简单的群体场理论弹跳方案,但$ζ$在整个bounce中保存下来,而$ \ Mathcal {r} $却不是。我们将结果与基于单个扰动变量(例如Mukhanov-Sasaki方程)的二阶方程的方法联系起来。

We study the dynamics of gauge-invariant scalar perturbations in cosmological scenarios with a modified Friedmann equation, such as quantum gravity bouncing cosmologies. We work within a separate universe approximation which captures wavelengths larger than the cosmological horizon; this approximation has been successfully applied to loop quantum cosmology and group field theory. We consider two variables commonly used to characterise scalar perturbations: the curvature perturbation on uniform-density hypersurfaces $ζ$ and the comoving curvature perturbation $\mathcal{R}$. For standard cosmological models in general relativity as well as in loop quantum cosmology, these quantities are conserved and equal on super-horizon scales for adiabatic perturbations. Here we show that while these statements can be extended to a more general form of modified Friedmann equations similar to that of loop quantum cosmology, in other cases, such as the simplest group field theory bounce scenario, $ζ$ is conserved across the bounce whereas $\mathcal{R}$ is not. We relate our results to approaches based on a second order equation for a single perturbation variable, such as the Mukhanov-Sasaki equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源