论文标题

在慢性疾病中关心心灵:使用物联网的一种可解释的AI方法

Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT

论文作者

Xie, Jiaheng, Zhao, Xiaohang, Liu, Xiang, Fang, Xiao

论文摘要

慢性病管理的健康感知为社会福利带来了巨大的好处。现有的健康感测研究主要集中于身体慢性疾病的预测。然而,抑郁症是慢性疾病的普遍并发症,但是已经研究了。我们利用医学文献使用运动传感器数据支持抑郁症检测。为了在这种决策中连接人类,维护信任并确保算法透明度,我们开发了一种可解释的深度学习模型:时间原型网络(TEMPPNET)。 Temppnet建立在新兴的原型学习模型基于。为了适应传感器数据的时间特征和抑郁症的渐进性,Temppnet与现有原型学习模型的不同之处在于其捕获原型的时间进展的能力。使用现实世界运动传感器数据进行的广泛的经验分析表明,在抑郁症检测中,Temppnet优于最先进的基准测试。此外,Temppnet通过可视化抑郁症的时间进展及其从传感器数据中检测到的相应症状来解释其决定。我们进一步采用用户研究和医学专家小组来证明其优于可解释性的基准。这项研究为有影响力的社会善良提供了一种算法解决方案 - 对健康感测的慢性疾病和抑郁症的协作护理。从方法上讲,它通过一种可解释的深度学习模型来促进现有文献,以从传感器数据中检测到抑郁症。患者,医生和护理人员可以在移动设备上部署我们的模型,以实时监测患者的抑郁症风险。我们的模型的解释性还使人类专家可以通过审查解释并做出明智的干预来参与决策。

Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression detection using motion sensor data. To connect humans in this decision-making, safeguard trust, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing temporal progressions of prototypes. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression detection. Moreover, TempPNet interprets its decision by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further employ a user study and a medical expert panel to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good -- collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression detection from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation and making informed interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源