论文标题
与人类协调深神网络的对象识别策略
Harmonizing the object recognition strategies of deep neural networks with humans
论文作者
论文摘要
在过去的十年中,深度神经网络(DNN)的许多成功在很大程度上是由计算量表驱动的,而不是生物智能的见解。在这里,我们探讨了这些趋势是否也在解释人类依赖于物体识别的视觉策略方面进行了伴随的改进。我们通过比较人类和DNN中视觉策略的两个相关但不同的特性来做到这一点:他们认为重要的视觉特征在于图像中以及它们如何使用这些功能将对象分类。在84个在ImageNet和三个独立数据集中训练的不同DNN中,测量了这些图像对象识别的人类视觉策略的位置和方式,我们发现了DNN分类准确性与与人类视觉策略的对象识别之间的系统权衡。随着其准确性的提高,最先进的DNN逐渐与人类保持一致。我们用神经谐波来纠正这个日益增长的问题:一种通用训练程序,既可以使DNN和人类视觉策略保持一致,又提高了分类精度。我们的工作代表了第一个证明,即当今指导DNN的规模定律也产生了更糟糕的人类视力模型。我们在https://serre-lab.github.io/harmonization上发布代码和数据,以帮助该领域构建更多类似于人类的DNN。
The many successes of deep neural networks (DNNs) over the past decade have largely been driven by computational scale rather than insights from biological intelligence. Here, we explore if these trends have also carried concomitant improvements in explaining the visual strategies humans rely on for object recognition. We do this by comparing two related but distinct properties of visual strategies in humans and DNNs: where they believe important visual features are in images and how they use those features to categorize objects. Across 84 different DNNs trained on ImageNet and three independent datasets measuring the where and the how of human visual strategies for object recognition on those images, we find a systematic trade-off between DNN categorization accuracy and alignment with human visual strategies for object recognition. State-of-the-art DNNs are progressively becoming less aligned with humans as their accuracy improves. We rectify this growing issue with our neural harmonizer: a general-purpose training routine that both aligns DNN and human visual strategies and improves categorization accuracy. Our work represents the first demonstration that the scaling laws that are guiding the design of DNNs today have also produced worse models of human vision. We release our code and data at https://serre-lab.github.io/Harmonization to help the field build more human-like DNNs.