论文标题

无限无限的代数通用性和序列空间间隙

Uncountably infinite algebraic genericity and spaceability for sequence spaces

论文作者

Konidas, C. A.

论文摘要

令$ x $为复杂值序列的拓扑矢量空间,而$ y $为$ x $的子集。我们为$ x \ setMinus y \ cup \ {0 \} $提供条件,以包含无限的无限线性独立密度向量子空间$ x $。我们还提供了$ x \ setminus y \ cup \ {0 \} $的条件,以包含无限无限的许多线性独立封闭的无限维矢量子空间,为$ x $。我们将这些结果应用于包含$ \ ell^p $空间的一系列空间。

Let $X$ be a topological vector space of complex-valued sequences and $Y$ be a subset of $X$. We provide conditions for $X \setminus Y \cup \{0\}$ to contain uncountably infinitely many linearly independent dense vector subspaces of $X$. We also provide conditions for $X \setminus Y \cup \{0\}$ to contain uncountably infinitely many linearly independent closed infinite-dimensional vector subspaces of $X$. We apply these results to a chain of spaces containing the $\ell^p$ spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源