论文标题

对循环订单,小组理论和选票进行投票

Voting on Cyclic Orders, Group Theory, and Ballots

论文作者

Crisman, Karl-Dieter, Holleran, Abraham, Martin, Micah, Noonan, Josephine

论文摘要

可以将循环顺序视为非正式的一种方式,以便在桌子周围坐​​在桌子上,也许是为了进行机会或晚餐。给定一组代理商,例如$ \ {a,b,c \} $,我们可以通过在此有限的关系中定义循环订单作为置换订单或线性订单来形式化,其中$ a \ ucs a \ ucc b \ ucs c $均在$ a \ ucs b \ ucs c $中都标识为$ b \ scuc c \ scucs a $ a $ a $ a $ c \ cucc c \ cuck a \ ucc a \ a \ a \ a \ a \ $。与其他具有某种结构的集合集合一样,我们可能希望在选择环状订单的一系列可能方法上汇总一组选民的偏好。 但是,鉴于循环订单的完整排名数量的组合爆炸,人们可能不希望使用通常的投票机制。这就提出了一个问题,即哪种选票可能是合适的。单个循环顺序,其中一组或其他投票类型?此外,置换群体对一组代理有自然作用。选择程序的合理要求是尊重这种对称性(在正常投票理论中相当于中立性)。 在本文中,我们将利用对称群体的表示理论分析几种自然类型的选票,以投票以对循环顺序进行投票,并使用此类选票进行基于点的程序。我们为两种完全不同的投票类型($ n = 4 $)提供了此类过程的全面表征,以及$ n = 5 $的最重要的观察结果。

A cyclic order may be thought of informally as a way to seat people around a table, perhaps for a game of chance or for dinner. Given a set of agents such as $\{A,B,C\}$, we can formalize this by defining a cyclic order as a permutation or linear order on this finite set, under the equivalence relation where $A\succ B\succ C$ is identified with both $B\succ C\succ A$ and $C\succ A\succ B$. As with other collections of sets with some structure, we might want to aggregate preferences of a (possibly different) set of voters on the set of possible ways to choose a cyclic order. However, given the combinatorial explosion of the number of full rankings of cyclic orders, one may not wish to use the usual voting machinery. This raises the question of what sort of ballots may be appropriate; a single cyclic order, a set of them, or some other ballot type? Further, there is a natural action of the group of permutations on the set of agents. A reasonable requirement for a choice procedure would be to respect this symmetry (the equivalent of neutrality in normal voting theory). In this paper we will exploit the representation theory of the symmetric group to analyze several natural types of ballots for voting on cyclic orders, and points-based procedures using such ballots. We provide a full characterization of such procedures for two quite different ballot types for $n=4$, along with the most important observations for $n=5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源