论文标题
通过使用威廉姆森变革来分析塞内塔的猜想
Analyzing a Seneta's conjecture by using the Williamson transform
论文作者
论文摘要
考虑缓慢变化的功能(SVF),Seneta在2019年的塞塔(Seneta)指出了以下含义,以$α\ geq1 $,$$ \ int_0^x y^y^{α-1}(1-f(1-f(1-f(y))dy \ textrm {is svf}是svf,as} x \ to \ infty,$$,其中$ f(x)$是$ [0,\ infty)$的累积分配函数。讨论了与这种转变和这种扩展猜想的特殊情况有关的互补结果。
Considering slowly varying functions (SVF), Seneta in 2019 conjectured the following implication, for $α\geq1$, $$ \int_0^x y^{α-1}(1-F(y))dy\textrm{ is SVF}\ \Longrightarrow\ \int_{[0,x]}y^αdF(y)\textrm{ is SVF, as } x\to\infty,$$ where $F(x)$ is a cumulative distribution function on $[0,\infty)$. Complementary results related to this transform and particular cases of this extended conjecture are discussed.