论文标题
潮汐破坏事件的后备后反位积聚圆盘模型
Advective accretion disc-corona model with fallback for tidal disruption events
论文作者
论文摘要
潮汐破坏事件(TDES)显示紫外线与X射线光谱指数与Eddington比率之间存在相关性,在低爱丁顿的比率下,非热X射线发射。我们将围绕积聚光盘的电晕视为非热X射线源。我们为TDES构建了一个时间依赖性和非权益主义的对流圆盘模型。假定插入的碎片在时间$ t_c $中形成种子盘,由于恒定外半径的质量增益而演变为质量增益,并具有质量下降速率$ \ dot {m} _ {\ rm fb} $,以及通过收集到黑洞而导致的质量损失。我们模型中的粘性压力取决于气体($ p_g $)和总($ p_t $)的压力为$τ_{r ϕ} \ propto p_g^{1-μ} p_t^μ$,其中$μ$是常数。我们发现,质量积聚率$ \ dot {m} _a $从埃德丁顿(Eddington)演变为sub-eDdington积聚,延迟演变接近$ t^{ - 5/3} $,其中$ t $是时间。我们发现辐射光盘光度遵循的延迟演变接近$ t^{ - 5/3} $。 X射线光度从电晕到辐射光盘光度的比率随$μ$而增加,并且在$μ\ neq 1 $的后期增加。我们获得了圆盘的X射线黑体温度,该温度与X射线观测的温度一致($ \ sim〜10^5〜 {\ rm k} $)。我们发现,当包括电晕时,椎间盘的辐射效率会随着时间的增加而增加,椎间盘的辐射效率会减小。我们忽略了流出,我们的模型更适用于接近subdington的积聚,当$ \ dot {m} _ {\ rm fb} $是sub-eddington。
Tidal disruption events (TDEs) show a correlation between the UV to X-ray spectral index and the Eddington ratio, with non-thermal X-ray emission at the low Eddington ratio. We consider the corona surrounding the accretion disc as a non-thermal X-ray source. We construct a time-dependent and non-relativistic advective accretion disc-corona model for TDEs. The infalling debris is assumed to form a seed disc in time $t_c$, that evolves due to the mass gain from the infalling debris at the constant outer radius with a mass fallback rate $\dot{M}_{\rm fb}$ and the mass loss through accretion onto the black hole. The viscous stress in our model depends on gas ($P_g$) and total ($P_t$) pressures as $τ_{rϕ} \propto P_g^{1-μ} P_t^μ$, where $μ$ is a constant. We find that the mass accretion rate $\dot{M}_a$ evolves from Eddington to sub-Eddington accretion with a late-time evolution close to $t^{-5/3}$, where $t$ is the time. We find that the bolometric disc luminosity follows a late-time evolution close to $t^{-5/3}$. The ratio of total X-ray luminosity from corona to bolometric disc luminosity increases with $μ$ and increases at late times for $μ\neq 1$. We obtain the X-ray blackbody temperature of the disc that agrees with the temperature from X-ray observations ($\sim~10^5~{\rm K}$). We find the radiative efficiency of the disc increases with time and decreases for a disc when the corona is included. We have neglected the outflow, and our model is more applicable for near-to-sub-Eddington accretion and when $\dot{M}_{\rm fb}$ is sub-Eddington.