论文标题
在间隙相半迪拉克系统中,带隙参数在Landau水平的表征中的作用被忽视:单层磷烯案例
The overlooked role of band-gap parameter in characterization of Landau levels in a gapped phase semi-Dirac system: the monolayer phosphorene case
论文作者
论文摘要
二维间隙半迪拉克(GSD)材料是具有有限带隙的系统,其电荷载体在一个方向上相对行为,而另一个方向则类似Schrödinger。在目前的工作中,我们表明,除了两个众所周知的能带特征(曲率和手性)外,带隙参数在GSD系统中Landau水平(LLS)的指数和磁场依赖性中也起着至关重要的作用。我们以单层磷烯为GSD代表性示例,以明确提供该参数在确定LLS指数和磁场依赖性方面的作用的物理见解。在存在垂直磁场的情况下,我们为电荷载体提供了有效的一维schrödinger方程,并认为其有效电位的形式对通过结构参数可调节的无尺度带隙明显敏感。这种有效差距的理论幅度及其与椭圆形$ k $ - 空格的回旋轨道的相互作用在确定原始单层磷烯中量子霍尔效应的类型方面可以解决似乎矛盾的。我们的结果强烈证实,LLS对该GSD材料中的磁场的依赖性是传统的二维半导体电子气体,最高到非常高的场状态。使用应变诱导的间隙修改方案,我们显示了LLS连续演变为$ b^{2/3} $行为的场依赖性,该行为适用于无间隙的半迪拉克系统。带隙参数的突出作用可能会影响频带各向异性的后果在GSD材料的物理特性中,包括磁转运,光导率,介电功能和热电性能。
Two-dimensional gapped semi-Dirac (GSD) materials are systems with a finite band gap that their charge carriers behave relativistically in one direction and Schrödinger-like in the other. In the present work, we show that besides the two well-known energy bands features (curvature and chirality), the band-gap parameter also play a crucial role in the index- and magnetic field-dependence of the Landau levels (LLs) in a GSD system. We take the monolayer phosphorene as a GSD representative example to explicitly provide physical insights into the role of this parameter in determining the index- and magnetic field-dependence of LLs. We derive an effective one-dimensional Schrödinger equation for charge carriers in the presence of a perpendicular magnetic field and argue that the form of its effective potential is clearly sensitive to a dimensionless band-gap that is tunable by structural parameters. The theoretical magnitude of this effective gap and its interplay with oval shape $k$-space cyclotron orbits resolve the seeming contradiction in determining the type of the quantum Hall effect in the pristine monolayer phosphorene. Our results strongly confirm that the dependence of LLs on the magnetic field in this GSD material is as conventional two-dimensional semiconductor electron gases up to a very high field regime. Using the strain-induced gap modification scheme, we show the field dependence of the LLs continuously evolves into $B^{2/3}$ behavior, which holds for a gapless semi-Dirac system. The highlighted role of the band-gap parameter may affect the consequences of the band anisotropy in the physical properties of a GSD material, including magnetotransport, optical conductivity, dielectric function, and thermoelectric performance.