论文标题

强烈分层的平面轴向流动,并应用于超临界流体

Instability in strongly stratified plane Couette flow with application to supercritical fluids

论文作者

Bugeat, B., Boldini, P. C., Hasan, A. M., Pecnik, R.

论文摘要

本文解决了在强密度和粘度分层的情况下,平面轴向流的稳定性。它证明了当基本流中存在最小运动粘度时,满足普遍的Fjortoft不稳定标准的普遍拐点的存在。与此最小值相关的特征尺度被确定为相关不稳定性的主要控制参数,而不管分层的类型如何。为了支持这一发现,使用分段线性碱基流在长波近似中得出了分析稳定模型。进行数值稳定性计算以验证这些模型并提供有关干扰涡度产生的更多信息。所有不稳定性都被解释为是由于两个涡旋波之间的相互作用而产生的。根据分层的类型,这两个波是由不同的物理机制产生的。当存在强密度和粘度分层时,我们表明它们是由剪切和惯性斜压效应的同时作用而产生的。为简单流体模型开发的稳定性模型最终在最近观察到的超临界流体中的不稳定模式下阐明了灯光(Ren等,J。FluidMech。,第871卷,2019年,2019年,第831-864页),提供了稳定图的定量预测,并确定了在玩游戏中的优势机制。此外,我们的研究表明,在这些流体中,在Widom线上达到的运动粘度的最低限度是它们不稳定性的主要原因。最终讨论了不同流体和流动中类似不稳定性(例如,流体)。

This paper addresses the stability of plane Couette flow in the presence of strong density and viscosity stratifications. It demonstrates the existence of a generalised inflection point that satisfies the generalised Fjortoft's criterion of instability when a minimum of kinematic viscosity is present in the base flow. The characteristic scales associated with this minimum are identified as the primary controlling parameters of the associated instability, regardless of the type of stratification. To support this finding, analytical stability models are derived in the long wave approximation using piecewise linear base flows. Numerical stability calculations are carried out to validate these models and to provide further information on the production of disturbance vorticity. All instabilities are interpreted as arising from the interaction between two vorticity waves. Depending on the type of stratification, these two waves are produced by different physical mechanisms. When both strong density and viscosity stratifications are present, we show that they result from the concurrent action of shear and inertial baroclinic effects. The stability models developed for simple fluid models ultimately shed light on a recently observed unstable mode in supercritical fluids (Ren et al., J. Fluid Mech., vol. 871, 2019, pp. 831-864), providing a quantitative prediction of the stability diagram and identifying the dominant mechanisms at play. Furthermore, our study suggests that the minimum of kinematic viscosity reached at the Widom line in these fluids is the leading cause of their instability. The existence of similar instabilities in different fluids and flows (e.g., miscible fluids) is finally discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源