论文标题

街道网络的图表学习

Graph representation learning for street networks

论文作者

Neira, Mateo, Murcio, Roberto

论文摘要

街道网络提供了有关我们城市中出现的不同时间和空间模式的宝贵信息来源。这些街道通常被表示为图表,其中交叉点以节点和街道为模型为它们之间的链接。先前的工作表明,可以通过对街道网络低维表示的学习算法来创建原始数据的栅格表示。相比之下,可以通过卷积神经网络对捕获高级城市网络指标的模型进行培训。但是,详细的拓扑数据通过街道网络的栅格化而丢失。模型无法单独从图像中恢复此信息,无法捕获复杂的街道网络功能。本文提出了一个能够直接从街道网络推断出良好表示的模型。具体而言,我们使用具有图形卷积层的变分自动编码器和输出概率完全连接图的解码器来学习编码本地网络结构和节点的空间分布的潜在表示。我们在数千个街头网络细分市场上训练该模型,并使用学习的表示形式生成合成的街道配置。最后,我们提出了一种可能的应用,以通过研究其在学文空间中的共同特征来对不同网络细分的城市形态进行分类。

Streets networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modelled as nodes and streets as links between them. Previous work has shown that raster representations of the original data can be created through a learning algorithm on low-dimensional representations of the street networks. In contrast, models that capture high-level urban network metrics can be trained through convolutional neural networks. However, the detailed topological data is lost through the rasterisation of the street network. The models cannot recover this information from the image alone, failing to capture complex street network features. This paper proposes a model capable of inferring good representations directly from the street network. Specifically, we use a variational autoencoder with graph convolutional layers and a decoder that outputs a probabilistic fully-connected graph to learn latent representations that encode both local network structure and the spatial distribution of nodes. We train the model on thousands of street network segments and use the learnt representations to generate synthetic street configurations. Finally, we proposed a possible application to classify the urban morphology of different network segments by investigating their common characteristics in the learnt space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源