论文标题

复杂缩放方法下的双链和隐藏的六角形态

Double-charm and hidden-charm hexaquark states under the complex scaling method

论文作者

Cheng, Jian-Bo, Zheng, Du-xin, Lin, Zi-Yang, Zhu, Shi-Lin

论文摘要

我们将双链和隐藏的六夸克作为分子在单验交换势模型的框架中。仔细考虑了多通道耦合和$ S-D $ WAVE混合。我们采用复杂的缩放方法来研究可能的Quasibound状态,其宽度来自三体衰变通道$λ_Cλ_Cπ$或$λ_C\barλ_cπ$。对于$ i(j^p)的双链系统= 1(1^+)$,我们获得了一个quasibound状态,如果结合能为-14.27 MeV,则宽度为0.50 MeV。 $ s $ -Wave $λ_cς_c$和$λ_cς_c^*$组件提供了主要的贡献。对于$ 1(0^+)$ double-Charm Hexaquark系统,我们找不到任何杆。我们在隐藏的Hexaquark系统中找到了更多的杆子。我们在$ i^g(j^{pc})= 1^+(0^{ - })$系统中获得一个极点,它只有一个通道$(λ_C\barς_c+σ_c\barλ_c)/\ sqrt {2} $。它的宽度为1.72 MEV,具有-5.37 MeV的粘合能。但是,我们找不到标量$ 1^ - (0^{ - +})$系统的任何极点。对于vector $ 1^ - (1^{ - +})$系统,我们找到了一个quasibound状态。它的能量,宽度和成分与$ 1(1^+)$ double-Charm案例的能量非常相似。在矢量$ 1^+(1^{ - })$系统中,我们得到了两个杆子 - 一个quasibound状态和共鸣。 Quasibound状态的宽度为0.6 MeV,结合能为-15.37 MeV。对于共振,相对于$λ_C\bardς_c$ threshold,其宽度为2.72 MEV,能量为63.55 MeV。它的部分宽度来自两体衰减通道$(λ_C\ bardd_c-σ_c\barλ_c)/\ sqrt {2} $显然大于三体衰减通道$λ_C\barλ_cπ$的部分宽度。

We investigate the double-charm and hidden-charm hexaquarks as molecules in the framework of the one-boson-exchange potential model. The multichannel coupling and $S-D$ wave mixing are taken into account carefully. We adopt the complex scaling method to investigate the possible quasibound states, whose widths are from the three-body decay channel $Λ_cΛ_cπ$ or $Λ_c\barΛ_cπ$. For the double-charm system of $I(J^P)=1(1^+)$, we obtain a quasibound state, whose width is 0.50 MeV if the binding energy is -14.27 MeV. And the $S$-wave $Λ_cΣ_c$ and $Λ_cΣ_c^*$ components give the dominant contributions. For the $1(0^+)$ double-charm hexaquark system, we do not find any pole. We find more poles in the hidden-charm hexaquark system. We obtain one pole as a quasibound state in the $I^G(J^{PC})=1^+(0^{--})$ system, which only has one channel $(Λ_c\barΣ_c+Σ_c\barΛ_c)/\sqrt{2}$. Its width is 1.72 MeV with a binding energy of -5.37 MeV. But, we do not find any pole for the scalar $1^-(0^{-+})$ system. For the vector $1^-(1^{-+})$ system, we find a quasibound state. Its energies, widths and constituents are very similar to those of the $1(1^+)$ double-charm case. In the vector $1^+(1^{--})$ system, we get two poles -- a quasibound state and a resonance. The quasibound state has a width of 0.6 MeV with a binding energy of -15.37 MeV. For the resonance, its width is 2.72 MeV with an energy of 63.55 MeV relative to the $Λ_c\barΣ_c$ threshold. And its partial width from the two-body decay channel $(Λ_c\barΣ_c-Σ_c\barΛ_c)/\sqrt{2}$ is apparently larger than the partial width from the three-body decay channel $Λ_c\barΛ_cπ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源