论文标题

使用高斯有限的实现和吉布斯采样的统计恢复21厘米可见性及其功率谱

Statistical recovery of 21cm visibilities and their power spectra with Gaussian constrained realisations and Gibbs sampling

论文作者

Kennedy, Fraser, Bull, Philip, Wilensky, Michael, Burba, Jacob, Choudhuri, Samir

论文摘要

无线电干涉仪旨在探测宇宙黎明和回报时期的21厘米信号,必须与系统的效应抗衡,这使得难以实现足够的动态范围,以将21cm信号与前景发射和其他效果分开。例如,仪器的色素响应调节了其他频谱平滑的前景,使其难以建模,而由于存在射频干扰(RFI),必须切除数据的很大一部分,从而留下数据中的空白。建模(调制和gappy)前景时的错误很容易产生否则应是21厘米信号主导模式的虚假污染。通过(例如)使用前景的非参数重建,对间隙进行缝隙并加权数据以降低污染水平,已经开发出了各种方法来减轻这些问题。我们提出了一种使用高斯约束实现(GCR)和Gibbs采样的耦合技术结合这些方法的贝叶斯统计方法。这提供了一种从21cm信号模式的联合后分布中绘制样品及其在Gappy数据存在下的功率谱的方法,并以计算上可扩展的方式绘制了不确定的前景模型。数据是由反向协方差矩阵加权的,该矩阵被估计为推断的一部分,以及一个可以边缘化的前景模型。我们证明了该技术在模拟的HERA样延迟频谱分析中的应用,并比较了对前景组件的三种不同方法。

Radio interferometers designed to probe the 21cm signal from Cosmic Dawn and the Epoch of Reionisation must contend with systematic effects that make it difficult to achieve sufficient dynamic range to separate the 21cm signal from foreground emission and other effects. For instance, the instrument's chromatic response modulates the otherwise spectrally smooth foregrounds, making them difficult to model, while a significant fraction of the data must be excised due to the presence of radio frequency interference (RFI), leaving gaps in the data. Errors in modelling the (modulated and gappy) foregrounds can easily generate spurious contamination of what should otherwise be 21cm signal-dominated modes. Various approaches have been developed to mitigate these issues by (e.g.) using non-parametric reconstruction of the foregrounds, in-painting the gaps, and weighting the data to reduce the level of contamination. We present a Bayesian statistical method that combines these approaches, using the coupled techniques of Gaussian constrained realisations (GCR) and Gibbs sampling. This provides a way of drawing samples from the joint posterior distribution of the 21cm signal modes and their power spectrum in the presence of gappy data and an uncertain foreground model in a computationally scalable manner. The data are weighted by an inverse covariance matrix that is estimated as part of the inference, along with a foreground model that can then be marginalised over. We demonstrate the application of this technique on a simulated HERA-like delay spectrum analysis, comparing three different approaches for accounting for the foreground components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源