论文标题
模量空间内部的t
The Tadpole Conjecture in the Interior of Moduli Space
论文作者
论文摘要
我们以离散对称性对卡拉比远流形的模量进行了模量稳定。不变的通量使得在复杂结构模量空间中的对称基因座截断,因此在其维度上大大减少了模量稳定问题。这使它们成为t象猜想的理想测试场。对于大型的四倍,我们表明在对称基因座上具有非零的壳上超电势的不变通量必定会稳定在复杂结构模量的至少60%。如果这种不变的通量会引起相对较小的t,因此可以绕过这些特殊基因座的t柱猜想所预测的结合。例如,我们与$ h^{3,1} = 3878 $讨论了calabi-yau hypersurface,并证明我们可以使用诱导M2 charge $ n_ \ text {flux} = 3 $的通量来稳定至少4932真实模量。
We revisit moduli stabilization on Calabi-Yau manifolds with a discrete symmetry. Invariant fluxes allow for a truncation to a symmetric locus in complex structure moduli space and hence drastically reduce the moduli stabilization problem in its dimensionality. This makes them an ideal testing ground for the tadpole conjecture. For a large class of fourfolds, we show that an invariant flux with non-zero on-shell superpotential on the symmetric locus necessarily stabilizes at least 60% of the complex structure moduli. In case this invariant flux induces a relatively small tadpole, it is thus possible to bypass the bound predicted by the tadpole conjecture at these special loci. As an example, we discuss a Calabi-Yau hypersurface with $h^{3,1}=3878$ and show that we can stabilize at least 4932 real moduli with a flux that induces M2-charge $N_\text{flux} =3$.