论文标题
旨在从$ b \ dk $中提取$γ$,而无需归档
Toward extracting $γ$ from $B \to DK$ without binning
论文作者
论文摘要
已知$ b^\ pm \ to dk^\ pm $过渡可以提供有关CKM角$γ$的理论上干净的信息,其中最精确的可用方法利用了中性$ d $的级联衰减到$ cp $ cp $ self-cop nef-cody-conjugate状态。目前,此类分析需要在$ d $ decay dalitz图中进行融合,而最近提出的方法用傅立叶系列扩展的截断代替了该封装。在本文中,我们提供了这两种方法的新颖替代品的原理证明,其中不需要数据表示级别的近似值。特别是,我们的新策略对达利兹图的幅度和强期变化没有任何假设。在选择测试统计量的选择中,这是以一定程度的歧义来量化的,以$γ$的给定值量化数据的兼容性,并改善了测试统计量的选择,从而提高了灵敏度。尽管我们目前的原理实施并未表现出对$γ$的最佳敏感性,但其概念上新颖的方法为$γ$提取的新策略打开了大门。需要更多的研究来查看这些是否可以与现有方法竞争。
$B^\pm \to DK^\pm$ transitions are known to provide theoretically clean information about the CKM angle $γ$, with the most precise available methods exploiting the cascade decay of the neutral $D$ into $CP$ self-conjugate states. Such analyses currently require binning in the $D$ decay Dalitz plot, while a recently proposed method replaces this binning with the truncation of a Fourier series expansion. In this paper, we present a proof of principle of a novel alternative to these two methods, in which no approximations at the level of the data representation are required. In particular, our new strategy makes no assumptions about the amplitude and strong phase variation over the Dalitz plot. This comes at the cost of a degree of ambiguity in the choice of test statistic quantifying the compatibility of the data with a given value of $γ$, with improved choices of test statistic yielding higher sensitivity. While our current proof-of-principle implementation does not demonstrate optimal sensitivity to $γ$, its conceptually novel approach opens the door to new strategies for $γ$ extraction. More studies are required to see if these can be competitive with the existing methods.