论文标题
Deligne-Mumford紧凑型的同时描述
A homotopical description of Deligne-Mumford compactifications
论文作者
论文摘要
我们对Deligne-Mumford Porporad的描述表示是在平滑的Riemann表面和具有参数化边界的平滑riemann表面的Annuli的同质化S1家族(具有适当兼容条件)的结果。这给出了Drummond-Cole和Oancea的结果,即在Poherads的情况下。我们还讨论了这种琐碎化的变化,这导致了与象征共同研究研究有关的Riemann表面的新部分压实。
We give a description of the Deligne-Mumford properad expressing it as the result of homotopically trivializing S1 families of annuli (with appropriate compatibility conditions) in the properad of smooth Riemann surfaces with parameterized boundaries. This gives an analog of the results of Drummond-Cole and Oancea--Vaintrob in the setting of properads. We also discuss a variation of this trivialization which gives rise to a new partial compactification of Riemann surfaces relevant to the study of operations on symplectic cohomology.